

Wither Mario Factory? The Role of Tools
in Constructing (Co)Creative Possibili-

ties on Videogame Consoles

Abstract

This essay examines the role that game development tools have in the design and crea-
tion of video games. It does so through the lens of a series of patents by Nintendo that
outlined the technological foundations for a truly (co)creative production platform for
games. Game development tools shape and are shaped by the kinds of games they are
used to produce as well as the underlying technologies of game consoles. The roles,
sites and means by which users are allowed to or encouraged to engage with
(co)creative tools significantly impacts the kinds of interventions users may make. The
essay makes the argument that tools, like Mario Factory form a technological foundation
for (co)creation, participatory design and convergence at a level that differs significantly
from current forms.

Keywords

Mario Factory; Tools; Game Development; (Co)Creation; Platform Studies; Actor Net-
work Theory; Science and Technology Studies; STS

Introduction

This essay examines the role that "tools" play in constructing and structuring the
(co)creative possibilities of game developers and their users/players. Game develop-
ment tools, or the technologies that surround, inform, enable/constrain, and otherwise
make game development possible, have been under-considered in our analysis of
(co)creative labor. The essay takes "Mario Factory" as its subject to map critical areas
of (co)creation in need of further discussion and inquiry. Mario Factory makes visible
technologies and ideas that in many cases remain behind closed doors of videogame
development companies. These systems are often covered by numerous non-disclosure
agreements (NDAs) or are highly guarded trade secrets, and for this reason Mario Fac-
tory provides valuable insight into game development practice. Even in the case of more
widely available game development technologies, few have extended themselves in
ways that make them truly accessible to "everyday" users.

Conceptually, the essay turns to Montfort and Bogost's conceptualization of "platforms"
(Montfort & Bogost, 2009), Pickering's notion of "mangles" (Pickering, 1995) and Rhein-
berger's concept of "epistemic things" (Rheinberger, 1997) in conversation with von
Hippel's "User Toolkits for Innovation." Together these frameworks illuminate how user
(co)creative capacity is structured [1]. Contrary to much that has been written about
(co)creation around videogames, this essay argues that videogames and console vide-
ogame systems, more acutely, are structured in ways that disable the majority of
(co)creative opportunities for players. The design of the systems used to make games
has specifically not engaged the user. This is not to say that (co)creation does not hap-
pen or occurs in only "unimportant" ways, merely that it is constrained in ways shaped
by the tools available to users, much as the tools available to developers shape the cre-
ative process of game development. Put simply, user-forums (Banks & Humphreys,
2008) and machinima (Lowood, 2006) are different in important ways from the collection
of technologies presented in this essay.

The essay begins by exploring the patents associated with Mario Factory and what pre-
cisely it was imagined to be. The essay then explores that possibility through its concep-
tual framework, ending with a discussion of what was potentially lost in the decision, by
Nintendo, to not pursue further the invention.

Introducing: Mario Factory

[FIGURE 1 ABOUT HERE]

On Halloween of 1994 Nintendo filed for a series of four patents that were later granted
between the years 1997 and 2000. This essay refers to them homogeneously as "Mario
Factory" (Hibino & Yamato, 1994; Suzuki, Yamato, Koganezawa, & Ozaki, 1994; Yama-
to, Nishiumi, Suzuki, Hotta, & Fujiwara, 1994a; Yamato, Nishiumi, Suzuki, Nakamura, &
Kimizuka, 1994b). This sequence of documents describe a videogame development,
testing, and manufacturing system designed specifically for hobbyists and users to en-
joy the creative possibilities of developing games for console videogame systems. Many
of the systems and ideas described in the documents have not yet come to market for
licensed Nintendo game developers and certainly not for the general player or hobbyist
game developer. Mario Factory is a critical lens for understanding and examining the
(co)creative possibilities for users and hobbyists as they currently exist [2].

[FIGURE 2 ABOUT HERE]

The patents describe, in great detail, a multi-processor computing system with one CPU
acting as the game’s processing unit and the other operating the editing and operating
system. A “model” is loaded into the editing system via a pluggable RAM cartridge,
much like the cartridges common in game consoles of the time. The model game pro-
vides users with a starting point from which games can be created. The Mario Factory

software provides and interface by which the user can then modify or extend the game
model in ways that can make it appear to be a new game. Put simply, that system “per-
mits a user to modify andy of the game's moving objects, background screens, music or
sound effects.” (Yamato et al., 1994a, pp. 54-55)

Mario Factory was, at the simplest level, a multi-processor computer and integrated
game console. As can be seen in Figure 2, the system was imagined to have output to a
television or monitor. It could have various connected peripheral devices, including a
keyboard, mouse, controllers, and audio line-in. The device was also capable of writing
directly to a game console cartridge, which could then be played on other game con-
soles. Based on the diagrams of the system (the controllers, in particular) and the de-
scription it was intentioned to be coupled with the Super Nintendo Entertainment System
(SNES), though not limited to that system only, as indicated in the documents:

[T]he game program executing hardware in the presently preferred
embodiment may be implemented by hardware currently being sold
by Nintendo of America as the Super Nintendo Entertainment Sys-
tem (SNES). The present invention, however, is not limited to the
Super NES related game program executing systems but rather
may be used with alternative game hardware implementations.
(Yamato et al., 1994b, p. 56)

Mario Factory, viewed broadly, was a new tool designed to allow for (co)creative content
for console videogames. It was also a complete suite of tools by which users could
begin (co)creating games. Perhaps most importantly, the device was designed to not
only target game developers, but specifically those unfamiliar with the game develop-
ment process.

The device was intended for creating not just derivative games, but as a system by
which new games could also be developed. Combined with a ROM writing system, it
allowed individuals to “fabricate” or actually make their own games. The device and un-
derlying software was also intended to be used by individuals without particular exper-
tise in game development and programming in particular. It was “designed primarily for
users who are unfamiliar with computer program[ing] or video game creating methodol-
ogy” (Yamato et al., 1994a, p. 53). This system would allow such users, through the in-
terface of the software to interactively construct games. The tool’s “icon driven, interac-
tive computing system ... permits a video game to be executed, stopped, edited, and
resumed from the point where the editing began with the editorial changes persisting
through the remainder of game play” (Yamato et al., 1994a, p. 53).

Nested throughout this icon driven system were a range of tools designed to meet the
needs of various users. While some were envisioned to be “relatively unsophisticated
elementary school students” the same system was designed to be useful for “sophisti-
cated game developers” as well. The software nested below each editor an increasingly

more detailed array of editing screens that allowed the user to customize the underlying
display, graphics and logics of the game’s systems (Yamato et al., 1994a, p. 53).

As early as 1994, Nintendo was critically aware of the complexity associated with video-
game development practices and the kinds of interdisciplinary creative collaborative
practice that is necessary for success. While their patent hints at perhaps a declining
collaboration between engineer, artist, and designer, it seems to be more about creating
tools that foster effective collaborative practice between those groups.

The "strange" combination of artist, engineer, and designer has long been a particularly
interesting aspect of videogame development. It has long been cited by game develop-
ers and social scientists, as being what makes the work of game development a particu-
larly compelling area of inquiry. In early examinations of the creation of Super Mario
Bros., the close contact between game designer, artists, and programmer are noted,
with tools being created to act as intermediaries between these groups so that they can
function with less "tedious" overhead.

[FIGURE 3&4 ABOUT HERE]

As can be seen in the documents, there were numerous integrated editors for the crea-
tion and editing of different kinds of a game's artistic assets as well as design data. Pixel
editors with the requisite color palates to be used by an artist were available. Animation
sequence editing, collision information and the various player states could be created
and edited within the interface. This was, of course, a process that Nintendo had be-
come intimately familiar since the development of the first Nintendo Entertainment Sys-
tem and the subsequent SNES.

It should be noted that in 1994 games developed for game consoles, like the SNES,
were coded almost exclusively in assembly language. There was very little abstraction
between the underlying computational system and how the code for a game was writ-
ten. Especially in the case of game consoles, because they were less general purpose
than other commonly available computer systems, there were far fewer general-use
tools that addressed their very particular computation needs. While a game console was
a general use computational system, its highly specific construction and custom compo-
nents made it a far more difficult platform to work with.

While details on the production processes of early Nintendo games are difficult to come
by, a handful of journalistic accounts offer insight into the practices internal to the com-
pany. These practices, like drawing banks of images for use in a game can be seen as
influencing the design of Mario Factory.

Technology eventually progressed to make some of the production
stages easier. Originally Miyamoto had to paint each character. The
colors in the painting were given numbers and the numbers were

inputted into a computer, dot by dot. He showed programmers not
only how the character looked but how it moved and what special
traits it had (a bee, when hit, lost its wings but continued to stalk
Mario; boats made out of skulls sank into a fire pit). The characters
and their movements were written, line by line, as instructions in a
computer program.

Tools were developed to eliminated much of the tedious work. Dia-
grams and drawings were translated into computer graphics with
technology called Character Generator Computer Aided Design
(CGCAD). "Character banks" of images were stored along with the
codes that described them. Movement, too, was now programma-
ble from a bank of choices. (Sheff, 1993, pp. 53-54)

Many of these practices, deriving from the development of the original Super Mario
Bros. can be seen and felt throughout these documents. An "auto programmer" (Yamato
et al., 1994a, p. 61) that allows the player to specify the pathway of an enemy through-
out the game speaks directly to changing "how a character moved" in the above quotes.
Of course all of these editors come with limitations. For example, the auto programmer
is limited to 64 nodes in the motion sequence. Pixel art is limited to 16 different colors
(the hexadecimal numbers 0-F) and animations were limited to 16 frames (decimal
numbers 0-15).

[FIGURE 5 ABOUT HERE]

Mario Factory featured an integrated audio editing and composition system that was in-
timately tied to the underlying audio systems of the game console. MIDI audio could be
assembled and modified throughout the development process. It was a direct interface
not to some abstracted audio creation system, but the hardware of the underlying game
console's MIDI audio chipset.

Yet, it is not only the construction of basic game assets that make Mario Factory the in-
teresting relic that it is, but the underlying software that supports these various systems.
While the patents spend a significant amount of time discussing the various copy pro-
tection mechanisms integrated into the system, much is also made of the "unit" based
approach to game development. Further, it details that future editing systems could be
added as new "models" were added to the system's repertoire.

In some ways, this is an early reference to the kinds of genres of games present in the
market place. While it specifically mentions role playing games as a site for possible ex-
pansion, clearly the developers were aware of the linkage between certain game genres
and associated gameplay styles that would enable user creativity without significant
technological intervention.

Of critical importance to the system was the idea of “model game software.” Encoded in
this notion is one that there are various “genres” of videogames. Examples such as
roleplaying games and “shoot-em-games are given (Yamato et al., 1994b, p. 66). The
use of these models would provide users the foundation for their games, while more
“advanced” users could even construct new models for distribution. It was further pre-
sumed that these models may make use of their own custom editors, such as map edi-
tors for first-person shooting games or map and dialog editing systems for roleplaying
games. Thus, the model both articulated the underlying style of game, but also
acknowledged that such models also encode and structure how the subsequent game
must be constructed.

Programming has even been refigured in such a way to encourage accessibility, using
"condition and process related operation tables" that are used to track the relational dy-
namics of the underlying game systems. Simultaneously the system is designed for both
"elementary school children" and "sophisticated game programmers" who are able to
interface with Mario Factory through both "mouse" and "keyboard". While the patents
emphasize the importance of making the device accessible, they also repeatedly dis-
cuss that the same tool could be put to use by those more familiar with the game devel-
opment process, even developing, internally, model software for use by their own de-
velopment teams. Even during game play, "at any point in the game in which the user
desires to change any displayed moving object character or portion of the screen back-
ground," the system can be stopped and put into an editing state (Yamato et al., 1994a,
pp. 54-59).

[FIGURES 6 & 7 ABOUT HERE]

The design screen mock-ups featured throughout the patents represent a hypothetical
game design and development toolkit. In more than a decade this kind of extensive set
of tools has never been developed or released for general use. Even licensed video-
game developers do not have this kind of toolset by which to prototype or create video-
game systems. As videogame development occurs now, much as it did at the time of
the writing of the Mario Factory patents, "considerable program [/] designer activity is
often required to modify a game under development in even very simple respects"
(Yamato et al., 1994a, p. 53).

It is important to reiterate that Mario Factory was developed and never released or even
publicly discussed. Mario Factory was a possible avenue for game development, with
integrated tools aimed at users and developers that was never pursued. In 1994, noth-
ing of this sort existed. Even now, the kinds of tools available for creating games on
consoles is highly constrained. What makes Mario Factory so compelling was its com-
plete breaking down of the barriers to entry for creating games for console systems.

Console development remains largely a dark art, characterized by custom asset pipe-
lines through which a game's art assets are processed for use in the game's engine.

Custom build scripts and compilers must be used and configured to work with software
engineer's preferred integrated development environments (IDE). Custom scripting lan-
guages must be integrated to each of those systems. Various middleware software,
which simplifies or implements aspects of a game (ie. physics or audio) must be com-
bined with the various other systems that allow the process to function. This entire pro-
cess is laborious in ways and for reasons that are far reaching (O'Donnell, 2011a). Con-
sole game development isn't clear in the ways that Mario Factory attempted.

Which isn’t to say that personal computers haven’t benefited from approaches like those
of Mario Factory. Systems like Scratch (MIT Media Lab, 2006), which do offer integrated
editing systems, limited models and integrated remixing are linked strictly to their online
platform. Game Star Mechanic (E-Line Media, 2010), another online system like
Scratch, which does offer more game models to students, is still limited in the amount of
customization that can be performed. Mario Factory possessed the ability, much like a
VHS of the era to then bring your creations to others in a way that was simply playable
on their SNES. Further, Mario Factory was always about game development, which
Scratch is not specifically designed for (Hayes & Games, 2008). Even now, tools like
Game Maker (YoYoGames, 1999), Game Salad Creator (Game Salad, 2007) or Unity
(Unity Technologies, 2005), game engines targeted at similar demographics do not offer
the same kinds of integrated and highly platform specific editors. Each relies heavily on
external tools used to create the content seen in the game. However, with the exception
of Unity, none of those systems can be used to author games on modern game con-
soles, let alone those of 1994.

The Mangled Tool(kit)

Tools structure the roles in which users and their means of (co)creation are allowed to
function. Users' tools are highly constrained by the sites and methods with which they
are allowed to engage with videogame developers. This structuring significantly impacts
three groups; users, game developers, and the game industry generally. For users it
primarily means that their role in the (co)creative possibilities are often not only con-
strained, but viewed as outside the interest or purview of game developers. User tools
are also often viewed as a sort of second order tool by professional game developers,
designed for users but certainly not the tool of a "real" game developer. For developers
it often means that their tools must be constructed in the process of working with new
hardware. The tools provided to developers are far from this robust, thus they create
new tools that may or may not work as the device manufacturer assumed they would be
used. In some cases this is exacerbated by even hardware manufacturers not knowing
how best to accomplish a given task with the hardware. For the industry more broadly,
this means that significant time and energy is used developing new tools with every
generational change in hardware. It also means, that largely, the work of game devel-
opment remains a mystery to users.

Mario Factory was, in effect, a DevKit [4] for the masses. This hints at a very different
possibility than one that is currently experienced by game developers. DevKits were in-
troduced so that game developers could create games for consoles where the hardware
differed significantly from that of PC's. Nintendo developed technologies to bridge the
gap between the PCs, where code was typically written, and the consoles, which ran the
compiled code. The complexity of these devices has increased dramatically, coinciding
with the complexity of consoles. These devices are cautiously guarded by game devel-
opment companies and are only leased to licensed publishers and videogame develop-
ers.

At the same time, however, DevKits and licensing are aspects of the game industry,
which frequently disappear from the perception of developers once they have estab-
lished themselves. Once a company has gained access to DevKits and SDKs, they re-
cede into the background, despite the fact that they were once one of the major gate-
keepers of access to industry networks [5]. In Latour's terms, these entities (or actants)
of the workplace, "sit in silence, as if they did not exist, invisible, transparent, mute,
bringing to the present scene their force and their action" (Latour, 1999, p. 185). Per-
haps even more importantly is that these actors connect with far flung people and socio-
technical networks that further give it power. Far too quickly developers allow them-
selves to forget just how difficult it can be to work amongst the structures of the industry.

The device itself encourages a particular kind of use. It directs the user to follow particu-
lar design and implementation paths that actually encode a level of knowledge about
game development practice. At the same time, it does so in a way that is compatible or
in line with the underlying platform. It encourages proper use and directs the kinds of
practices that have been deemed productive, practical and reasonable.

Thus, Mario Factory is important, because it provides an interface into the underlying
"platform" of the videogame console. The idea that Mario Factory offers a friendly inter-
face to the platform of the underlying device is important as it mediates between the de-
veloper and all of the various baggage that goes along with those platforms, i.e., hard-
ware specificities, operating systems, programming languages, software development
kits, supported data formats, and the various ways these systems layer together. In
choosing platforms, "media creators… simplify development and delivery in many
ways… [yet] work that is built for a platform is supported and constrained by what the
chosen platform can [or cannot] do." (Montfort & Bogost, 2009, p. 3).

These devices are particularly implicated during the process of developing games. For
most developers, tools are a hodgepodge of technologies and practices that are devel-
oped along side the game they help construct. Put another way, tools are very much like
the "experimental systems" that both enable and constrain technoscientific practice:

An experimental system can readily be compared to a labyrinth,
whose walls, in the course of being erected, in one and the same

movement, blind and guide the experimenter. In the step-by-step
construction of a labyrinth, the existing walls limit and orient the di-
rection of the walls to be added. It forces us to move around by
means and by virtue of checking out, of groping, of tâtonnement.
He who enters a labyrinth and does not forget to carry a thread
along with him, can always get back. (Rheinberger, 1997, pp. 74-
75)

Of course, the irony with regard to game development is that rarely is anyone actually
"carrying thread" along with them. The daily activity and large teams associated with
most game development largely prohibits the kind of note and record keeping that in
science lends itself to analysis. While it might be possible to examine data associated
with a game's source code repository or asset tracking system, such data is difficult to
find. What can be said throughout the process of developing a game is that often times
things don't go quite as planned initially. It is most important to examine those, "ele-
ments in the network [that] prove difficult to tame or difficult to hold in place," and how
"vigilance and surveillance have to be maintained, or else the elements will fall out of
line and the network will start to crumble" (Law, 1989, p. 114). It is this vigilance, surveil-
lance, and fear of un-tame users that tends to limit the availability of the numerous de-
vices and technologies that form the foundation of console videogame development.
Especially as we examine technologies that (co)create videogames it is important to
remember that "machines have no inertia of their own; like kings or armies they cannot
travel without their retinues or impedimenta" (Latour, 1987, p. 250).

The further a project progresses along particular paths, the more complex the intercon-
nections between systems. Each game development tool connects with other "retinues
or impedimenta." We must consider the tools of developers, which partially determines
what is possible and what is not to each. Put more simply, tools shape the creative pro-
cess. Devices in the laboratory of scientists have long been examined as important "ep-
istemic things," which shape the possibilities within the lab.

In configuring and reconfiguring epistemic things, scientists meet
with resistance, resilience, recalcitrance. Not anything goes. If there
is construction, it is constrained. (Rheinberger, 1997, p. 225)

The dance of agency, seen asymmetrically from the human end,
thus takes the form of a dialectic of resistance and accommodation,
where resistance denotes the failure to achieve and intended cap-
ture of agency in practice, and accommodation an active human
strategy of response to resistance, which can include revisions to
goals and intentions as well as to the material form of the machine
in question and to the human frame of gestures and social relations
that surround it. (Pickering, 1995, p. 22)

It is at these junctions where tools most often appear. Tools mediate those points of
connection and those points most frequently occur where artist, engineer, and designer
intersect. Other points indicate limitations of the hardware or underlying platform of a
system. Tools encourage users in particular directions or explicitly disable the ability to
perform tasks that have often found to cause issue with other aspects of a game's un-
derlying systems. The tools both enable and constrain developers in certain ways.

Mario Factory was about making game development accessible. Perhaps even more
importantly, it was about enabling development in ways that were found to to be largely
successful through time and experience for Nintendo. Many authors are quick to point at
the numerous means by which users can become (co)creators in the worlds of video-
game development, and they are not at fault for attempting to more closely examine this
hidden labor. However, it is difficult to consider the kinds of activities that are actually
possible for users amongst the diverse activities of game development.

The hardware that runs a given platform can (dis/en)courage particular approaches to
its use. What an engineer might assume about how to approach a particular issue may
actually be better solved another. Mario Factory through its user interface design would
encourage "appropriate" use of the hardware. While this could also be used to the det-
riment of developers, it is certainly a level of direction that is often not found in the doc-
umentation that accompanies game development kits.

It is this user friendly interface to a complex piece of technology and the dynamic pro-
cesses that surround it that distinguishes this device. Mario Factory's interface and inte-
grated designer tools provide more explicit guidance to users as to how particular tasks
might be accomplished. Furthermore, it exposed different kinds of interfaces through its
computer mouse, keyboard, controller, and microphone that enables user interaction in
ways that they find recognizable.

Toolkits for user innovation and design are integrated sets of prod-
uct-design, prototyping, and design-testing tools intended for use by
end users. The goal of a toolkit is to enable non-specialist users to
design high-quality, producible custom products that exactly meet
their needs. Toolkits often contain "user-friendly" features that guide
users as they work. They are specific to a type of product or service
and a specific production system. For example, a toolkit provided to
customers interested in designing their own, custom digital semi-
conductor chips is tailored precisely for that purpose - it cannot be
used to design other types of products. Users apply a toolkit in con-
junction with their rich understanding of their own needs to create a
preliminary design, simulate or prototype it, evaluate its functioning
in their own use environment, and then iteratively improve it until
they are satisfied. (von Hippel, 2005, pp. 147-148)

Yet even now, the majority of game development toolkits favor design languages far
removed from those of typical users. It seems reasonable to assume that an entire
game could not be developed strictly with the use of the controller, but that is by no
means the extent of the factory. It comes equipped with keyboard, microphone, and
numerous other peripherals that may prove useful for the user-creator. The patent doc-
uments even provide a better sense of the plethora of skills necessary for the creation of
a full game, something uncommon amongst the general population. Art, animation,
sound effects, music composition, level design, scripting of behaviors, and even a
graphical programming language are components of the proposed tool kit. Perhaps
most importantly, the device comes equipped with the ability to write a user's creation to
a cartridge that would be playable on the corresponding console. The ability to create
games in a design language familiar to gamers and share them with friends, seems
more like what has been termed part of "convergence culture." This is "embodied, for
example in the work of the game modders, who build on code and design tools created
for commercial games as a foundation for amateur game production" (Jenkins, 2006, p.
141) [3].

It is important for Game Studies to attend to the technological tools, expertise, and cul-
tural spaces of game production, as they contribute significantly to the kinds of games
that are produced [6]. In particular, the tools used to create a game have significant im-
pacts on its underlying design and mechanics. For example, in examining the mechan-
ics of Gears of War and its mechanics, "[i]nspried by the cover system of kill.switch,
Gears of War combined a linear level structure with action sequences where the domi-
nant strategy is to take cover and patiently create an effective combat tactic" (Sicart,
2008). At the same time, those cover locations actually had to be tagged specifically us-
ing the tools created by Epic Studios. The mechanics are often intertwined heavily with
the systems that come together under the vague term "tools." Indeed, Epic's tools have
progressed to the point where they are a product in and of themselves, the Unreal En-
gine.

Even our models for analysis of games need to understand the relationship that game
elements, such as, "object inventories," "interfaces," and "interactions," (Consalvo &
Dutton, 2006) have with the tools used to generate a game. Many of the properties of
those items, on screen information, and dynamics are specified by game designers not
directly in "code," but using the intermediate tools that provide them with interfaces to
the code that then interprets that information. Game developers often refer to this gener-
ically as "data." Art assets, data, and code ultimately combine to form the resulting
technological artifact that is understood as a game.

While many users may participate by playing a game and offering insight into how it
might be made different via web-forums (Banks & Humphreys, 2008), through user-
interface MODs (Taylor, 2006), or through established SDKs for MODers (Nieborg &
van der Graaf, 2008), this is not the same kind of convergent activity as remixing, edit-
ing, and uploading a video to YouTube, which, in a sense, Mario Factory was about.

Writing in a web forum is a very different activity from remixing the tiles of one game title
into another game with completely different mechanics, or editing the graphical charac-
teristics of a game element. Each of these activities and the possible technological in-
terventions available to the (co)creator are quite different. Tools shape and constrain the
activities of general users doubly, for they know no other interface into these systems.

Wither Mario Factory?

Thus, the question, "Wither Mario Factory?" is a complex one. It is a question that ulti-
mately asks, where are the user toolkits for videogame innovation? More importantly,
the focus needs to be on the capacity of these user toolkits; what do they allow or disal-
low? To what depth can the user (co)create? To what extent can they distribute their
(co)creations? I ask these questions, because I believe they are important for users and
for the videogame industry more broadly. User tools are also frequently viewed as a sort
of second order tool by professional game developers, designed for users but, "certain-
ly" not the tool of "real" game developers.

In this context, Mario Factory becomes a foil, a contingent direction, which (co)creative
and user-centric technologies could have developed into a compelling space for user-
generated designs and innovation. Instead, the space remains heavily patrolled and
surveilled. Even web-forums have admins and managers to control users. The web-
forum as a technology connects with other systems that socially and technologically
shape the (co)creative process. This does not argue that (co)creative "development"
can only exist with this kind of expansive game editing, remixing, and manufacturing de-
vice, but that the options that avail themselves to users are different in each technologi-
cal context. It is also imperative to examine the options available to the (co)creating user
in each context. In what ways can users engage with the materials and arguments tak-
ing place in the development process?

Mario Factory represents a pivotal moment in the broader history of the videogame in-
dustry where the potential for (co)creative labor was examined, even patented, but ulti-
mately never pursued. The implications are more important than they may appear on
the surface. Robust user facing tools like Mario Factory form the foundation for a new
set of accessible tools in which users may engage with videogames in various ways and
at various levels. In many cases users who begin working with remixing games may do
so only at a cursory level, but may find themselves working to learn the requisite skills to
become more and more engaged in the practice of making games.

The emphasis on control, exhibited in how console videogames are developed and dis-
tributed, speaks toward the anxieties that many console manufacturers felt given the
social and economic context in which they were introducing the devices. Mario Factory
was developed during a time of high anxiety surrounding videogames as a new media
technology (Williams, 2003). Nintendo's determination to control production speaks to

apprehension on the part of companies to allow the unpredictable user into the produc-
tive space, for they suddenly become, at least socially, culpable for the creations of their
users.

The future of (co)creative labor in the console videogame industry is ultimately linked to
the possibilities of the surrounding tools and their ability to speak to users' existing skills.
Currently, this is not the case. Tools available to users and professional developers
alike require specialized knowledge and significant time investment. A reassessment is
necessary in light of how (co)creative production practice has changed the space of
media (co)production. These models ultimately spring from a historical trajectory, which
placed secrecy as a foundational concern for developers, publishers, and manufactur-
ers. Users have long been absent from the conversation, largely being considered a pe-
riphery aspect of videogame development. However, ideas about how users fit into the
production process have changed, and a return to the concepts central to Mario Factory
that of the user-accessible tools for (re)mixing, altering, and creating games should be
returned to.

Notes

[1] - Some might argue that my use of the word "structure" or "structuring" is contrary to
the use of concepts drawing on Actor-Network Theory (ANT), which Pickering and
Rheinberger both draw on in their respective conceptual frameworks. It is often pre-
sumed that since ANT examines, "the stability and form of artifacts … as a function of
the interaction of heterogeneous elements … shaped and assimilated into a network,"
that networks and structure are somehow divorced. However, heterogeneous engineer-
ing as a vein within ANT specifically examines, "the way in which solutions are forged in
situations of conflict," (Law, 1989, pp. 111-113) which I tend to call "structure" as short
hand for those elements that shape, shift, and forge the creative process. ANT returns
continually to the notion of stability. Thus, structuring occurs even within the actor-
network. Perhaps this use of the term comes closer to what some might call "protocols"
or the "protocological field" (Galloway, 2004, p. 17). Regardless, the issue is one of con-
trol, conflict, and force in the realm of creative collaborative work.

[2] - I make no claim that user-friendly tools do not exist or that there have not been sig-
nificant developments in console manufacturers attempting to provide greater access to
development kits. Rather, despite these efforts, none has come so close to delivering a
fully integrated user-friendly experience that authorizes and encourages the kind of
(re)mixing, mashing, and sharing that is so often cited as crucial to convergence culture.

[3] - While many examine "convergence" as a kind of social process linking producers
and users of media, this essay reframes it as a socio-technological issue linked to pro-
fessional and production issues. In part, this is an attempt to think through what game

development might look like if tools were designed to support a more "participatory" and
user co-constructable model.

[4] - The "DevKit" is distinct from "development kits" as defined by some authors (Posti-
go, 2003). There is slippery and important language to keep in mind. SDKs or software
development kits are distinctly different, though intertwined with DevKits. DevKits typi-
cally have accompanying SDKs. However, it is possible for companies to release SDKs
without having DevKits. The hardware of the DevKit and access to documentation and
other resources like online discussion forums are part of what distinguishes them from
an SDK.

[5] - The structure and role of licensing and DevKits as well as the preeminence of the
console videogame industry is a perennial area of analysis (Aoyama & Izushi, 2003;
Dyer-Witheford & Sharman, 2005; O’Donnell, 2011b; Williams, 2002). It is not the at-
tempt of this essay to retread this particular issue, but instead examine the relationship
that these devices have with the game development process, and ultimately how the
actual release of a product like Mario Factory might have shifted users (co)creative pos-
sibilities on videogame consoles.

[6] - In some ways this is a fairly typical Science and Technology Studies (STS) kind of
argument, that studying the context of videogame development is as important as study-
ing the artifacts produced. This kind of approach is difficult however, because often
game companies are unwilling or unable to provide the kind of access that would be
necessary for these kinds of analysis. It is for this reason that I demonstrate, through
this essay, that we can actually talk about devices found in videogame development
companies even though they may be otherwise kept under non-disclosure agreement
(NDA) or be obscured from the analysts' view.

Game Engine Bibliography

E-Line Media. (2010). Gamestar Mechanic [Browser-based Flash Application]. New

York, New York: http://gamestarmechanic.com

Game Salad. (2007). Game Salad Creator [PC, Mac Application]. Austin, Texas:

http://gamesalad.com

MIT Media Lab. (2006). Scratch [PC, Mac Application]. Cambridge, Massachusetts:

http://scratch.mit.edu

Unity Technologies. (2005). Unity [PC, Mac Application]. San Francisco, California:

http://www.unity3d.com

YoYo Games. (1999). Game Maker [PC, Mac Application]. Dundee, Scotland:
http://www.yoyogames.com

Bibliography

Aoyama, Y., & Izushi, H. (2003). Hardware Gimmick or Cultural Innovation? Technolog-

ical, Cultural, and Social Foundations of the Japanese Video Game Industry. Re-
search Policy, 32(3), 423-444.

Banks, J., & Humphreys, S. (2008). The Labour of User Co-Creators: Emergent Social

Network Markets? Convergence, 14(4), 401-418.

Consalvo, M., & Dutton, N. (2006). Game Analysis: Developing a Methodological Toolkit

for the Qualitative Study of Games. Game Studies, 6(1). Retrieved from
http://gamestudies.org/0601/articles/consalvo_dutton

Dyer-Witheford, N., & Sharman, Z. (2005). The Political Economy of Canada's Video

and Computer Game Industry. Canadian Journal of Communication, 30(2), 187-
210.

Galloway, A. R. (2004). Protocol: How Control Exists After Decentralization. Cambridge,

MA: MIT Press.

Hayes, E. R., & Games, I. A. (2008). Making Computer Games and Design Thinking: A

Review of Current Software and Strategies. Games and Culture, 3(3-4), 309-332.

Hibino, T., & Yamato, S. (1994). Security Systems and Methods for a Videographics

and Authentication Game/Program Fabricating Device. Nintendo Co., Ltd.,.

Jenkins, H. (2006). Convergence Culture: Where Old and New Media Collide. New

York, NY, USA: New York University Press.

Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers Through

Society. Cambridge, MA: Harvard University Press.

Latour, B. (1999). Pandora's Hope: Essays on the Reality of Science Studies. Cam-

bridge, MA: Harvard University Press.

Law, J. (1989). Technology and Heterogeneous Engineering: The Case of Portuguese

Expansion. In W. Bijker, T. P. Hughes, & T. Pinch (Eds.), The Social Construction
of Technological Systems: New Directions in the Sociology and History of Tech-
nology (pp. 111-134). Cambridge, MA: MIT Press.

Lowood, H. (2006). Storyline, Dance/Music, or PvP? Game Movies and Community
Players in World of Warcraft. Games and Culture, 1(4), 362-382.

Montfort, N., & Bogost, I. (2009). Racing the Beam: The Atari Video Computer System

(1). Cambridge, MA: MIT Press.

Nieborg, D. B., & van der Graaf, S. (2008). The Mod Industries? The Industrial Logic of

Non-market Game Production. European Journal of Cultural Studies, 11(2), 177-
195.

O’Donnell, C. (2011). Games are not Convergence: The Lost Promise of Digital Produc-

tion and Convergence. Convergence, 17(3), 271-286.

O'Donnell, C. (2011). The Nintendo Entertainment System and the 10NES Chip: Carv-

ing the Videogame Industry in Silicon. Games and Culture, 6(1), 83-100.

Pickering, A. (1995). The Mangle of Practice: Time, Agency, and Science. Chicago, IL:

University of Chicago Press.

Postigo, H. (2003). From Pong to Planet Quake: Post-Industrial Transitions from Leisure

to Work. Information, Communication & Society, 6(4), 593-607.

Rheinberger, H.-J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins

in the Test Tube. Stanford, CA: Stanford University Press.

Sheff, D. (1993). Game Over: How Nintendo Zapped an American Industry, Captured

Your Dollars, and Enslaved Your Children. New York, NY: Random House Inc.

Sicart, M. (2008). Defining Game Mechanics. Game Studies, 8(2). Retrieved from

http://gamestudies.org/0802/articles/sicart

Suzuki, T., Yamato, S., Koganezawa, N., & Ozaki, Y. (1994). Video

Game/Videographics Program Fabricating System and Method with Unit Based
Program Processing. Nintendo Co., Ltd.,.

Taylor, T. L. (2006). Does WoW Change Everything?: How a PvP Server, Multinational

Player Base, and Surveillance Mod Scene Caused Me Pause. Games and Culture,
1(4), 318-337.

von Hippel, E. (2005). Democratizing Innovation. Cambridge, MA: MIT Press.
Williams, D. (2002). Structure and Competition in the U.S. Home Video Game Industry.

The International Journal on Media Management, 4(1), 41-54.

Williams, D. (2003). The Video Game Lightning Rod. Information, Communication & So-
ciety, 6(4), 523-550.

Yamato, S., Nishiumi, S., Suzuki, T., Hotta, T., & Fujiwara, K. (1994a). Video

Game/Videographics Program Fabricating System and Method with Superimpose
Control. Nintendo Co., Ltd.,.

Yamato, S., Nishiumi, S., Suzuki, T., Nakamura, T., & Kimizuka, M. (1994b). Video

Game/Videographics Program Editing Apparatus with Program Halt and Data
Transfer Features. Nintendo Co., Ltd.,.

